SS-CDC: A Two-stage Parallel Content-Defined
Chunking Method for Data Deduplicating

Fan Ni Xing Lin Song Jiang

4 Y
’
UNIVERSITY OF

TEXAS

’e

UNIVERSITY OF

TEXAS

ARLINGTON NetApp- ARLINGTON

Data is Growing Rapidly

180

160

140

120

100

80

Zettabytes

60

40

20
. Data created

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

From storagenewsletter.com

Most of the data needs to be safely stored.
Efficient data storage and management have become a big challenge.

The Opportunity: Data Duplication is Common

= Sources of duplicate data:
— The same files are stored by multiple users into the cloud.
— Continuously updating of files to generate multiple versions.
— Use of checkpointing and repeated data archiving.

= Significant data duplication has been observed.
— For backup storage workloads
* Over 90% are duplicate data.
— For primary storage workloads
» About 50% are duplicate data.

The Deduplication Technique can Help

B

File2

When duplication is detected Then only one copy is stored:

using fingerprinting):
(sing fingerprinting)

SHAI(% =SHA2(=) Filel

File2

= Benefits

— Storage space
— 1/O bandwidth

— Network traffic

= Aimportant feature in commercial storage systems
— NetApp ONTAP system
— Dell-EMC Data Domain system

= The data deduplication technique is critical.

— How to deduplicate more data?
— How to deduplicate faster? 4

Deduplicate at Smaller Chunks ...

=

——
Chunking and --D- Remove E
fingerprinting -D-- duplicate chunks

... for higher deduplication ratio

= Two potentially major sources of cost in the deduplication:
— Chunking

— Fingerprinting
= Can chunking be very fast?

Fixed-Size Chunking (FSC)

* FSC.: partition files (or data streams) into equal- and fixed-size
chunks.
— Very fast!

= But the dedup ratio can be significantly compromised.
— The boundary-shift problem.

File A HOWABEYOU"OK"?REALLY'?'YES'?NO

Y NN

File B I—IOWA.REYOIU'?OK}’?REA,LLY’?'YES’?'NO

Fixed-Size Chunking (FSC)

* FSC.: partition files (or data streams) into equal- and fixed-size
chunks.
— Very fast!

= But the dedup ratio can be significantly compromised.
— The boundary-shift problem.

File A |HOWAREYOU?OK?REALLYZYESZNO
L X X X, XX XX

FileB |HHOWAREYOU?OK?REALLY?YES?NO

Content-Defined Chunking (CDC)

= CDC: determines chunk boundaries according to contents
(a predefined special marker).

— Variable chunk size.
— Addresses boundary-shift problem
— However, it can be very expensive

Assume the special marker is ‘?’

FileA | HOWAREYOU?OK?REALLY?YES?NO

X Ve vV " w

FileB | HHOWAREYOU?OK?REALLY?YES?NO

Actually the marker is determined by applying a hash function on a
window of bytes, such as hash(“YOU?”) == pre-defined-value

=» Even more expensive (likely more than half of the dedup cost!)
8

Parallelizing CDC Chunking Operations

A File

Parallelizing CDC Chunking Operations

AF

TR RN

Parallelize its chunking:

Po P1 P P3

! ! ! !

Parallelizing CDC Chunking Operations

A File

- -

Parallelize its chunking:

I N
o] Ll |)|

However, the parallelized chunking can compromise deduplication ratio.

11

Compromised Deduplication Ratio

401 V74 Baseline B8 1MB segments o\°
S A
g 5 v
s ~30y
®) = 0\0
fN O o Vv
B o\° o\o QO\ ,:?
g g 201 > S V72 - B
o = Q &) Y
2 = ~ ~
I = o°
= P ©
S 101 oo N o M o o
a ©
Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

Deduplication ratio = data size before dedup / data size after dedup

12

Chunks can be Different!

The rule of forming chunks:
— Usually between two adjacent markers.
— But neither too small (= Minimum-chunk-size) nor (£ maximum-chunk-size)
— Inherently a sequential process

min max

The parallel chunking:
— Atrtificially introduce a set of markers (segment boundaries).
— These maker positions change with data insertion/deletion.
— Partially brings back the boundary shift problem.

13

The Goal of this Research

To design a parallel chunking technique that ...

— Does not compromise any deduplication ratio.

— Achieves superlinear speedup of chunking operations.

14

Approach of the Proposed SS-CDC Chunking

Two-phase chunking:

— Stage 1: produce all markers in parallel on a segmented file

File 1

One thread

« A thread works on 16 consecutive segments at a time.

« Use AVX-512 SIMD instructions to process the 16 segments in
parallel at a core.

a

a

3

3

« The markers are recorded in a bit vector

0

10

|

1

0

1

0

0

1] -

1

0

1

0

0

1

0]1-...

15

The Approach of the Proposed SS-CDC Chunking

Two-phase chunking:

— Stage 2: sequentially determines the chunks based on the
marker bit vector

 Take account of minimum and maximum chunk sizes

16

Advantages of SS-CDC

It doesn’t have any loss of deduplication ratio
— The second stage is sequential.

— It generates the set of chunks exactly the same the sequential
chunking.

It potentially achieves superlinear speedup.
— Stage 1 accounts for about 98% of the chunking time.
— Stage 1 is parallelized across and within cores.

— With optimization, Stage 2 accounts for less than 2% of the
chunking time.

17

Experiment Setup

= The hardware
— Dell-EMC PowerEdge T440 server with 2 Intel Xeon 3.6GHz CPUs
— Each CPU has 4 cores and 16MB LLC.
— 256GB DDR4 memory.

= The Software
— Ubuntu 18.04 OS.
— The rolling window function is Rabin.

— Minimum/average/maximum chunk sizes are 2KB/16KB/64KB,
respectively.

18

The Datasets

Cassandra

Redis
Debian
Linux-src

Neo4;
Wordpress

Nodejs

Docker images of Apache Cassandra, an open-source
storage system

Docker images of the Redis key-value store database
Docker images of Debian Linux distribution (since Ver. 7.11)

Uncompressed Linux source code (v3.0 ~ v4.9) downloaded
from the website of Linux Kernel Archives

Docker images of neo4j graph database

Docker images of WordPress rich content management
system

Docker images of JavaScript-based runtime environment
packages

19

Single-thread/core Chunking Throughput

| —
o
-
-

Chunking Throughput (MB/s)
=
-
-

500 1

2] SS-CDC BE= Sequential CDC
Cassandra Redis Debian Linux-src Neod;j Wordpress Node
Datasets

Consistently about 3.3X speedup

20

Multi-thread/core Chunking Throughput

I 8 threads

4 threads

B 2 threads KX

1 thread

A,

7777 <

No

ress

p

g,
| /// W

| V/AN

/7
| e

lIlllX STC
Datasets

§m
S -

zR

<
—
e
S
s}

07777

-
)

N o\ — =

dnpoads Sunyuny)

The chunking speedups are superlinear and scale well.

21

Existing Parallel CDC Deduplication Ratio Reduction

O]
o

Dedup Ratio Reduction (%)

S

o8]
&)

N
o

=
o

512K B segments
E= 1MB segments

Cassandra Redis Debian Linux-src Neod Wordpress Node
Datasets

Compared to SS-CDC, the reduction can be up to 43%.
Using smaller segments leads to higher reduction

Conclusions

SS-CDC is a parallel CDC technique that has
— high chunking speed.
— zero deduplication ratio loss.

SS-CDC is optimized for the SIMD platforms.

— Similar two-stage chunking technigues can be applied in
other platforms such as GPU.

23

