SS-CDC: A Two-stage Parallel Content-Defined
Chunking Method for Data Deduplicating
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Data is Growing Rapidly
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Most of the data needs to be safely stored.
Efficient data storage and management have become a big challenge.



The Opportunity: Data Duplication is Common

= Sources of duplicate data:
— The same files are stored by multiple users into the cloud.
— Continuously updating of files to generate multiple versions.
— Use of checkpointing and repeated data archiving.

= Significant data duplication has been observed.
— For backup storage workloads
* Over 90% are duplicate data.
— For primary storage workloads
» About 50% are duplicate data.



The Deduplication Technique can Help
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=  Benefits

— Storage space
— 1/O bandwidth

— Network traffic

= Aimportant feature in commercial storage systems
— NetApp ONTAP system
— Dell-EMC Data Domain system

=  The data deduplication technique is critical.

— How to deduplicate more data?
— How to deduplicate faster? 4



Deduplicate at Smaller Chunks ...
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... for higher deduplication ratio

= Two potentially major sources of cost in the deduplication:
— Chunking

— Fingerprinting
= Can chunking be very fast?



Fixed-Size Chunking (FSC)

*  FSC.: partition files (or data streams) into equal- and fixed-size
chunks.
— Very fast!

= But the dedup ratio can be significantly compromised.
— The boundary-shift problem.

File A HOWABEYOU"OK"?REALLY'?'YES'?NO
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Fixed-Size Chunking (FSC)

*  FSC.: partition files (or data streams) into equal- and fixed-size
chunks.
— Very fast!

= But the dedup ratio can be significantly compromised.
— The boundary-shift problem.
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Content-Defined Chunking (CDC)

= CDC: determines chunk boundaries according to contents
(a predefined special marker).

— Variable chunk size.
— Addresses boundary-shift problem
— However, it can be very expensive

Assume the special marker is ‘?’

FileA | HOWAREYOU?OK?REALLY?YES?NO
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FileB | HHOWAREYOU?OK?REALLY?YES?NO

Actually the marker is determined by applying a hash function on a
window of bytes, such as hash(“YOU?”) == pre-defined-value

=» Even more expensive (likely more than half of the dedup cost!)
8



Parallelizing CDC Chunking Operations
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Parallelizing CDC Chunking Operations

AF

TR RN

Parallelize its chunking:

Po P1 P P3

! ! ! !




Parallelizing CDC Chunking Operations

A File
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However, the parallelized chunking can compromise deduplication ratio.
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Compromised Deduplication Ratio
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Deduplication ratio = data size before dedup / data size after dedup
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Chunks can be Different!

The rule of forming chunks:
— Usually between two adjacent markers.
— But neither too small (= Minimum-chunk-size) nor (£ maximum-chunk-size)
— Inherently a sequential process

min max

The parallel chunking:
— Atrtificially introduce a set of markers (segment boundaries).
— These maker positions change with data insertion/deletion.
— Partially brings back the boundary shift problem.
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The Goal of this Research

To design a parallel chunking technique that ...

— Does not compromise any deduplication ratio.

— Achieves superlinear speedup of chunking operations.
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Approach of the Proposed SS-CDC Chunking

Two-phase chunking:

— Stage 1: produce all markers in parallel on a segmented file

File 1

One thread

« A thread works on 16 consecutive segments at a time.

« Use AVX-512 SIMD instructions to process the 16 segments in
parallel at a core.
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« The markers are recorded in a bit vector
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The Approach of the Proposed SS-CDC Chunking

Two-phase chunking:

— Stage 2: sequentially determines the chunks based on the
marker bit vector

 Take account of minimum and maximum chunk sizes
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Advantages of SS-CDC

It doesn’t have any loss of deduplication ratio
— The second stage is sequential.

— It generates the set of chunks exactly the same the sequential
chunking.

It potentially achieves superlinear speedup.
— Stage 1 accounts for about 98% of the chunking time.
— Stage 1 is parallelized across and within cores.

— With optimization, Stage 2 accounts for less than 2% of the
chunking time.
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Experiment Setup

= The hardware
— Dell-EMC PowerEdge T440 server with 2 Intel Xeon 3.6GHz CPUs
— Each CPU has 4 cores and 16MB LLC.
— 256GB DDR4 memory.

= The Software
— Ubuntu 18.04 OS.
— The rolling window function is Rabin.

— Minimum/average/maximum chunk sizes are 2KB/16KB/64KB,
respectively.
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The Datasets

Cassandra

Redis
Debian
Linux-src

Neo4;
Wordpress

Nodejs

Docker images of Apache Cassandra, an open-source
storage system

Docker images of the Redis key-value store database
Docker images of Debian Linux distribution (since Ver. 7.11)

Uncompressed Linux source code (v3.0 ~ v4.9) downloaded
from the website of Linux Kernel Archives

Docker images of neo4j graph database

Docker images of WordPress rich content management
system

Docker images of JavaScript-based runtime environment
packages
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Single-thread/core Chunking Throughput
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Consistently about 3.3X speedup
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Multi-thread/core Chunking Throughput
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The chunking speedups are superlinear and scale well.
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Existing Parallel CDC Deduplication Ratio Reduction
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Compared to SS-CDC, the reduction can be up to 43%.
Using smaller segments leads to higher reduction



Conclusions

SS-CDC is a parallel CDC technique that has
— high chunking speed.
— zero deduplication ratio loss.

SS-CDC is optimized for the SIMD platforms.

— Similar two-stage chunking technigues can be applied in
other platforms such as GPU.
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